
©Copyright 2025

Alexander Le Metzger

A Practical Algorithmic Approach to Graph Embedding

Alexander Le Metzger

A senior thesis
submitted in partial fulfillment of the

requirements for the degree of

Bachelor’s of Science in Mathematics

University of Washington

2025

Reading Committee:

Stephanie Smallwood, Chair

Stefan Steinerberger, Supervisor

Program Authorized to Offer Degree:
UW Department of Mathematics

University of Washington

Abstract

A Practical Algorithmic Approach to Graph Embedding

Alexander Le Metzger

Chair of the Departmental Honors Committee:
Director Stephanie Smallwood
University Honors Program

Minimal-genus graph embedding is about drawing graphs on surfaces with no edges

crossing and as few holes as possible. This thesis first covers the necessary background

in topological graph theory to understand graph embeddings through rotation sys-

tems. It then studies an adaptation of this approach, Practical Algorithm for Graph

Embedding (PAGE), that takes advantage of the cycle sequence of a graph to work

more efficiently in practice, especially for graphs of high girth or low degree. This

enables it to determine the previously intractable genus of the (3, 12)-cage as 17.

TABLE OF CONTENTS

Page

Chapter 1: Introduction . 1

Chapter 2: Background . 2

2.1 Topology . 2

2.2 Graph Theory . 3

2.3 Compact Surfaces . 5

2.4 Graph Embedding . 7

2.5 Rotation Systems . 9

Chapter 3: Algorithm . 12

3.1 Motivation . 12

3.2 Walkthrough . 13

3.3 Results . 15

Chapter 4: Conclusion . 18

Bibliography . 19

i

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Austin Ulrigg who collab-

orated on the design and proof of the PAGE algorithm, and to Professor Gunnar

Brinkmann for inputs on visualizing results. The thesis is also heavily inspired by

Graphs on Surfaces by Mohar and Thomassen [13], Pearls in Graph Theory by Harts-

field and Ringel [8], Topological Graph Theory - A Survey by Archdeacon [1], Survey

of Graph Embeddings into Compact Surfaces by Potoczak [14], and Rotation Systems

and Cellular Imbeddings by Waldrop [16].

ii

1

Chapter 1

INTRODUCTION

Consider the famous Utility Problem. There are 3 houses and 3 utilities—water,

electricity, and fire. Each house must be connected to each of the utilities by pipes

and no crossing of pipes is allowed. This can be represented by the complete bipartite

graph, K3,3, which has two sets of 3 vertices as seen in Figure 1.1a. Kuratowski has

shown that it is not possible to draw K3,3 on a plane without edges crossing [9]. But

as seen in Figure 1.1b, it is possible to draw it on a different surface, the torus.

(a) The Utility graph K3,3 (b) K3,3 embedded on a torus

Figure 1.1: The Utility Problem

The characterizing property of the torus that makes this drawing, called an em-

bedding, possible is that it has a hole. Intuitively, more complex graphs will require

more holes to embed. Yet any graph has some minimum number of holes, its genus,

for which it embeds. Finding this minimum genus and its corresponding embedding

has many applications in circuit design, data visualization, and more. Chapter 2

expounds the necessary theory and Chapter 3 explores finding these algorithmically.

2

Chapter 2

BACKGROUND

2.1 Topology

Starting with some definitions [14], a topological space X is a set with a collection T

of open subsets called a topology that satisfies the following properties:

(a) ∅ and X are open sets

(b) the intersection of a finite number of open sets is an open set

(c) the union of open sets is an open set

A set S ⊆ X is open if and only if S ∈ T . A set is closed if its complement is open.

A subspace is a subset A ⊆ X with a topology defined by taking the intersection of

A with the open sets of X. An open cover of X is a collection of open sets such that

X is contained in their union. X is compact if every open cover of X has a finite

open subcover. X is disconnected if there exists a pair of disjoint nonempty open sets

whose union is X, and connected otherwise. A component is a maximal connected

subset of X such that adding any other elements would make it disconnected.

A function f : X → Y mapping between topological spaces X, Y is continuous if

the preimage of every open set is open. Continuous functions preserve topologicaal

properties such as connectedness and compactness. A homeomorpism h : X → Y

is a continuous bijection with continuous inverse h−1 : Y → X. Topological spaces

are homeomorphic if there exists a homeomorphism between them. An embedding is

a function e : X → Y that homeomorphically maps X to the subspace f(X) ⊆ Y .

Notably e is not necessarily surjective.

3

Continuous functions allow “gluing” multiple topological spaces into one quotient

space. Say a topological space X consists of subsets A1, . . . , Ak. Let ∼ be the equiva-

lence relation such that all elements a ∈ Ai are in the same equivalence class [a]. Then

the quotient space is X/∼ = {[x] : x ∈ X}. Define the quotient map π : X → X/∼ by

π(x) = [x]. The quotient topology of X/∼ is then defined such that π is continuous.

That is, a set U ⊆ X/∼ is open if and only if π−1(U) ⊆ X is open in X. This is

illustrated in Figure 2.1 which considers the unit interval [0, 1] and takes 0 ∼ 1. The

resulting quotient space is a circle obtained by gluing together 0 and 1 because they

were placed in the same equivalence class and thus mapped to the same element in the

quotient space. In Figure 2.4, various compact surfaces are constructed by “gluing”.

Figure 2.1: X = [0, 1] is split into subsets {x} for x ∈ X and the endpoints are
identified by letting the quotient map π({0}) = π({1}) so these subsets end up as the
same point in the quotient space X/∼.

2.2 Graph Theory

A finite simple undirected graph G = {V,E} is a finite set of vertices V and edges E

where each edge {u, v} ∈ E has two distinct endpoints u, v. Henceforth, this is just

a graph. Combinatorially, each edge and vertex has no other properties than given

{u, v} ∈ E, u is considered adjacent to v. Topologically, a graph G corresponds to a

topological space, its geometric realization, also denoted G. Here vertices are distinct

points and edges are subspaces homeomorphic to [0, 1] joining their endpoints. With

4

a quotient space, endpoints corresponding to the same vertex are “glued” together. It

is this topological interpretation that allows defining the notion of embedding hinted

at in the introduction. Namely, an embedding of G into some topological space X is

a homeomorphism of the geometric realization into a subspace of X.

It is worth expressing some topological properties of the geometric realization

using combinatoric definitions of the graph since these are easier to work with al-

gorithmically. In fact, the goal of Section 2.5 will be to define embeddings purely

combinatorially. First, the combinatoric definition of a connected graph is one such

that for every pair of vertices u, v ∈ V , there is a path between them. Since endpoints

are glued, this also aligns with the topological definition: a graph is connected if and

only if its geometric realization is connected. Likewise, the connected components of

the geometric realization directly correspond to the combinatoric connected compo-

nents—maximal sets of vertices where every pair is connected by a path. A path is a

sequence of vertices with adjacent elements in the sequence also adjacent in the graph.

A cycle is a path where the first and last vertex are the same. A simple cycle has

no repeated vertices. This means it is a Jordan curve in the geometric realization,

i.e., homeomorphic to a circle. The girth of a graph is the number of edges in its

shortest cycle. Finally, two graphs are homeomorphic if they can be obtained from

the same graph through a sequence of subdivisions—replacing edges with paths as

seen in Figure 2.2.

Figure 2.2: H1 and H2 are homeomorphic (obtained from G through subdivisions).

5

2.3 Compact Surfaces

So, graphs can embed into topological spaces through their geometric realization. For

the purposes motivated in the introduction, a special type of topological space is of

interest, namely a compact surface. This is because, by Theorem 2, all graphs embed

into some compact surface. To unpack the definition of a compact surface, first note

that a surface is a topological space S satisfying the following properties [14]:

(a) every x ∈ S is contained in an open set that is homeomorphic to the open disk

(b) for x, y ∈ S, there exists disjoint open sets U and V such that x ∈ U , y ∈ V

(c) S has a basis of countably many open sets—a basis is a set of open sets such

that any open set is a union of basis elements

Property (a) intuitively ensures that, zooming into any point, the surface locally looks

like a flat sheet of paper as seen in Figure 2.3.

Figure 2.3: Surfaces locally look like discs.

A compact surface is then a compact topological space that is also a surface. This

is best understood constructively. There are two kinds of compact surfaces. The ori-

entable ones, like a sphere or torus, have two distinct sides (an inside and an outside).

The non-orientable ones, like a crosscap, don’t. Formally, non-orientable compact

surfaces contain a subspace homeomorphic to the crosscap constructed in Figure 2.4

and orientable ones don’t. In fact, any compact surface can be constructed as a quo-

tient space of a polygon with an even number of edges by pairing and gluing certain

6

edges. In Figure 2.4, the unit square [0, 1] × [0, 1] can be partitioned into 4 subsets:

A = {(x, y) : x, y ∈ (0, 1)}, B = {(0, y), (1, y) : y ∈ (0, 1)}, C = {(x, 0), (x, 1) : x ∈

(0, 1)}, D = {(0, 0), (0, 1), (1, 0), (1, 1)}. A sphere, torus, and crosscap can then be

formed by taking the quotient space with these as the equivalence classes. Larger

polygons can visualize embeddings into more complex surfaces as in Figure 2.7.

Figure 2.4: Constructing a torus (top), sphere (middle), and crosscap (bottom) by
gluing a unit square (4-sided polygon). These constitute S1, S0, and S̃1 respectively.

By Theorem 1, proved by Brahana [2], we can form all orientable compact surfaces

by “gluing” together n tori to form an n-hole torus like in Figure 2.5. A compact

surface that is homeomorphic to an n-hole torus has genus n and is denoted Sn.

Similarly, all non-orientable surfaces S̃m can be formed by gluing togetherm crosscaps

and have non-orientable genus m.

Theorem 1 (Brahana, [2]). For all n,m ∈ N, Sn and S̃m are compact surfaces.

All compact orientable surfaces are homeomorphic to Sn. All compact non-orientable

surfaces are homeomorphic to S̃m. The surface obtained by gluing n handles and

m > 1 crosscaps is homeomorphic to S̃2n+m.

7

Figure 2.5: One torus is S1. By identifying a small section of the surface and gluing,
we can combine two tori into one compact surface S2, and so on.

The nice consequence of Theorem 1 is that every graph embeds into some compact

surface as promised in Theorem 2 based on the similar argument by Potoczak [14].

Theorem 2 (Potoczak, [14], 2.2.6). All graphs can be embedded into a compact sur-

face. Moreover, all graphs can be embedded in Sn for some n and S̃m for some m.

Proof. Let G be an arbitrary graph. Draw it in the plane with edge crossings. Add

a torus at each edge crossing to make one of the edges go over the other as the

other passes through the hole. This is Sn which is a compact surface by Theorem 1.

Likewise by Theorem 1, G can be embedded in S̃2n.

2.4 Graph Embedding

The topological notion of embedding a graph is now well defined. What remains is

a combinatoric definition that enables easy enumeration of possible embeddings of a

graph into different surfaces so the minimum genus one can be found. First consider

a graph G embedded into a surface S by e : G → S. Looking at the space S \ e(G),

the connected components are called the faces of the embedding. The boundary can

be obtained by walking around the subgraph consisting of the edges and vertices

8

touching a face. The length of a face is the number of edges in its boundary. If G is

connected, the boundary of each face is a cycle as seen in Figure 2.6a.

(a) In connected graphs, each boundary is a
cycle (possibly non-simple like f).

(b) In disconnected graphs, some faces have
boundaries made of multiple cycles (like g).

Figure 2.6: Faces of Graphs.

It is well established [13] that minimum genus is additive over the connected

components. Thus, without loss of generality, just the connected graph case has

to be handled. Since each face is a cycle and there is a finite number of cycles,

one way of enumerating embeddings would be to enumerate all cycle combinations.

Unfortunately, this is an astronomical number of combinations to check and not all

cycle combinations correspond to an embedding. For one, Proposition 1 restricts the

total length of the faces in an embedding and Theorem 3, proved by Simon L’huiler

[10], restricts the number of faces. Remark 5 discusses a number of other restrictions.

Proposition 1. Embedded graph G = {V,E} with faces F has
∑
f∈F

length(f) = 2|E|.

Proof. Each edge borders either one or two faces. If it borders two faces f, g ∈ F , it

is counted once in length(f) and once in length(g). Otherwise it borders only one

face f ∈ F , and is still counted twice in length(f).

Theorem 3 (Euler’s Formula, [10]). A connected genus g graph G = {V,E} with

faces F satisfies |V | − |E|+ |F | = 2− 2g.

Luckily, thanks to Heffter, Edmonds, and Youngs, we have a more elegant combi-

natoric definition known as the rotation system.

9

2.5 Rotation Systems

Consider an embedding of a graph G into an orientable surface Sn. At each vertex,

order the dv incident edges counter-clockwise to form a cyclic permutation πv : e1 →

· · · → edv → e1 called a local rotation at v. The rotation system is the collection of

all local roations ΠG = {πv : v ∈ V }. Typically, the notation for each local rotation

is simplified to only list e1 once and, since each edge has v as one of its endpoints,

only the other endpoint is listed: πv : v1 → · · · → vdv where ei = {vi, v}. In some

readings, such as the SageMath source code [5, 6], this is often referred to as the

darts. This notation is exemplified in Figure 2.7 showcasing the rotation system for

the embedding of K3,3 from Figure 1.1b. Importantly, not only can every embedding

be expressed as a rotation system, but every rotation system also corresponds to an

embedding by Theorem 4. Consult [7] for a full proof.

1
2

3

4

5

6
4

5

2

3

π1 : 4 → 5 → 6

π2 : 4 → 6 → 5

π3 : 4 → 6 → 5

π4 : 1 → 3 → 2

π5 : 1 → 3 → 2

π6 : 1 → 2 → 3

Figure 2.7: The 4 sided polygon representing the torus when corresponding colors are
glued. Inside is K3,3. On the right is the rotation system for the embedding.

Theorem 4 (Heffter-Edmonds Equivalence Theorem, [7]). Every rotation system on

a graph G defines a unique (up to equivalence) embedding of G onto an oriented

surface. Conversely, every such embedding determines a rotation system for G.

10

Proof. The converse follows from the definition, so consider a rotation system ΠG. It

can be used to trace out the faces of an embedding as follows: choose a starting edge

e0 = {v0, v1}; walk along it from v0 to v1; πv1 contains · · · → v0 → v1 → v2 → · · ·

so the next edge to walk along is e1 = {v1, v2}; keep going until the walk returns to

e0; a cycle e0 → · · · → e0 that uses each edge at most once in each direction has

been traced out; starting over for each possible starting edge and direction obtains

a collection of cycles that cover all the edges; from this collection of cycles, select a

subset that traverses each edge exactly once in each direction; these are the faces.

Each face forms a convex polygon with number of sides equal to the length of the

face and each side labeled by the corresponding edge. The sides corresponding to the

same edge can now be glued together. The result is a surface because each edge lies in

two faces. Around each vertex v, the polygon faces are aligned with the cyclic ording

πv. It follows that the surface corresponds to the rotation system, is orientable, and

thus is homeomorphic to Sn for some n. Therefore, this is an embedding.

Remark 5. The rotation system definition highlights a number of necessary conditions

for a collection of cycles to correspond to an embedding. In the proof of Theorem

4, it is clear that each directed edge must be traversed exactly once. This is not

sufficient since, if a cycle contains vertices a → b → a with b of degree greater than

1, then we’d have to glue an edge to itself which does not yield a convex polygon.

Even removing all such backtracking cycles is not sufficient since, if one cycle contains

a → b → c, another contains c → b → a, and a third contains b, then gluing the

first two together as faces results in a flat crease at b that the third cycle cannot be

glued to. Further, removing all such cycle pairs for vertices of degree greater than 2

is also not sufficient. For vertices of degree greater than 5, two groups of three cycles

can form two “pyramids” touching at a point when glued together which violates

property (a) of the definition of a surface. This pattern of edge cases continues for

higher degree vertices and is illustrated in Figure 2.8.

11

Figure 2.8: Vertex v on the left has degree 3 > 2 and the blue sequence a → v → c
mirrors the red sequence c → v → a which forces the green sequence to backtrack.
Vertex v on the right has degree 6 > 5 and the local rotation πv is not cyclic because
it involves a permutation with two cycles: 1, 2, 3 and 4, 5, 6.

12

Chapter 3

ALGORITHM

3.1 Motivation

Rotation systems as defined in Section 2.5 and combined with the procedure to convert

a rotation system into an embedding from the proof of Theorem 4, yield a straight-

forward algorithm for determining the minimum genus and corresponding embedding

by iterating through all the rotation systems. This is the algorithm adopted by many

popular computational software packages such as SageMath [5, 6]. However it is quite

inefficient both theoretically and in practice. Theoretically, it is O(|V |
∏

v∈V (dv−1)!)

which is O(2|V |) for 3-regular graphs and O(n(n− 1)!n) for the complete graph on n

vertices Kn. Practically, it takes days to compute small graphs like K7 or K5,5. K8

and above is completely out of the picture.

The problem is that embedding a graph into an arbitrary surface is NP-hard [15]

and thus very unlikely to have an efficient polynomial time solution. Thus the natural

approach is to develop specialized algorithms that are efficient for particular graph

families. A promising constraint on the genus is given by the girth in Proposition 2.

Proposition 2. A genus g graph satisfies |E| ≤ (|V |−g)t/(t−2) where t is the girth.

Proof. Observe that a connected graph has face lengths bounded below by the girth

t. By Proposition 1, t|F | ≤ 2|E|. Combine with Euler’s formula for the result.

This not only suggests that an algorithm could take advantage of the girth property

of a graph. It also suggests that the entire distribution of cycle lengths might be

useful. In fact, this is useful and is what the PAGE algorithm [12] explained in the

next section takes advantage of to compute previously intractable high girth graphs.

13

3.2 Walkthrough

Euler’s formula shows that finding the minimum genus means finding the largest

collection of faces. As noted in Remark 5, this means finding the largest collection

of cycles that satisfy a rotation system for which a necessary constraint is to exclude

backtracking cycles. All such cycles can be enumerated efficiently using an algorithm

in [12]. K3,3 has many cycles, including 39 simple ones shown in Figure 3.1.

Figure 3.1: The 9 length 2, 18 length 4, and 12 length 6 simple cycles of K3,3.

The length 2 ones are backtracking and can be excluded. Even then, there is an

astronomical number of cycle combinations to try. Luckily, since
∑
f∈F

length(f) =

2|E|, shorter cycles enable fitting more cycles into F . Starting with length 4 cycles,

there are 36 non-backtracking ones as shown in Figure 3.2.

Figure 3.2: The 36 length 4 non-backtracking cycles of K3,3.

Moreover, Theorem 4 shows that each directed edge must be used exactly once.

Thus one can be choosen arbitrarily and then determines that exactly one of the

cycles that include it must be in the set of faces F . Choosing, say edge 6 → 2,

leaves just 8 cycles in Figure 3.3. A cycle can be chosen arbitrarily, and the algorithm

14

can continue choosing more cycles in this manner until either a complete set of faces

with 2|E| edges is achieved or a rotation system becomes impossible since the added

cycle introduced multiple cycles in a local rotation (see Figure 2.8). If at any point

a rotation system becomes impossible, the algorithm simply backtracks to one of the

arbitrary cycle choices and chooses another one. The small branching factor, in this

case 8, makes it tractable.

Figure 3.3: The 8 length 4 non-backtracking cycles of K3,3 with 6 → 2.

To complete the K3,3 example, say the dark blue cycle from Figure 3.3 is chosen.

Then Figure 3.4 concludes the computation and since there are 3 cycles in the set of

faces, by Euler’s formula, the genus is correctly determined as 1.

(a) This cycle has an edge
1 → 6 so another cycle in F
must have 6 → 1.

(b) A cycle containing 6 →
1 is the purple cycle. It has
an edge 4 → 3.

(c) All directed edges are
used exactly once so the al-
gorithm terminates.

Figure 3.4: PAGE applied to K3,3.

15

3.3 Results

An important high girth graph family is the cage graphs. An (r, t)-cage is the smallest

(fewest vertex) graph of degree r with girth t. The full PAGE algorithm can be found

in pseudo-code in [12] and has been implemented in C here. Experimental results are

compared against the SageMath algorithm [5, 6] and one of the fastest general

purpose algorithms, multi genus [3] using a single CPU core on an M1 Macbook

Pro for fair comparison. It is worth noting that one of the advantageous properties

of PAGE is that it is easily parallelized [12]. This is not reflected in Table 3.1.

Even then, multi genus struggles to keep up around t ≥ 9 and PAGE is the only

tractable algorithm for t ≥ 12. Accordingly, PAGE yields a new result [12]:

Theorem 6. The genus of the (3, 12)-cage is 17.

Unfortunately, the structure of the cage graphs is not known for t > 12. Likely,

PAGE will be useful in determining their genus once these larger cages are discovered.

r t |V | |E| genus PAGE (s) SageMath (s) multi genus (s)
3 3 4 6 0 0.008 0.004 0.006
3 4 6 9 1 0.008 0.039 0.006
3 5 10 15 1 0.008 0.027 0.006
3 6 14 21 1 0.008 0.010 0.006
3 7 24 36 2 0.010 1.737 0.006
3 8 30 45 4 0.032 118.958 0.012
3 9 58 87 7 1.625 DNF 45.099
3 10 70 105 9 39.211 DNF 9863.72
3 12 126 189 17 254.45 DNF DNF

Table 3.1: Practical runtime comparison for (3, t)-cages in seconds

In addition to performing well on high girth graphs in practice, PAGE also has

good theoretical runtime on high girth graphs as seen in Theorem 7 and proved in

[12].

Theorem 7. PAGE is O(n(4m/n)n/t) for graphs of girth t, n vertices, and m edges.

https://github.com/SanderGi/Genus

16

Another useful property of PAGE is that it outputs not only the minimal genus

but also the corresponding rotation system. This allows for easy verification of the

results both programatically and visually as seen in Figure 3.5 and Theorem 8.

11

36

61

56
29

28

27
55

70

50

20

18

16

14

12

10

8

6

4

2

23

52

57

30

31

32

5863

39

40

41

64

69

48 49

34

35

60

65
42

43

44
66

51

21

22

3738

62

67

45

46

47

68 53

24

25

26

54

59

33

9

7

5

3

1

19

17

15

13

Figure 3.5: (3, 10) cage with minimal genus 9 and the faces color coded.

Theorem 8. PAGE takes any connected graph G, calculates its genus g, and produces

the rotation system for an embedding of G on a minimal genus surface Sg.

Proof. The algorithm finds the facial cycles to deduce the minimum genus. These

faces can be glued together as specified in Theorem 4 to construct Sg which yields

the embedding and consequently the rotation system by Section 2.5.

A final useful property of PAGE proved in [12] is that it outputs progressively

narrowing bounds following Theorem 9. This is a natural consequence of the back-

tracking nature. By slightly relaxing the order that the cycles are explored to no

longer be entirely in increasing order of genus, the algorithm will find more collec-

tions of cycles that correspond to faces in an embedding at the cost of not being able

to stop at the first one. The algorithm can then keep searching to progressively lower

17

the upper bound on the genus. By choosing the order appropriately, the lower bound

on the genus can also be made to increase at a reasonable rate. Consult [12] for a

rigorous explanation.

Theorem 9. For any connected graph with m edges, n vertices, and variable genus

g, PAGE computes two monotone sequences gk and Gk satisfying

g0 ≤ g1 ≤ · · · ≤ gr = g, G0 ≥ G1 ≥ · · · ≥ Gs = g,

that converge to g in a finite number of steps and time.

18

Chapter 4

CONCLUSION

Minimal-genus graph embedding has many important applications. It is relevant

in infrastructure optimization where having fewer bridges (torus handles) is less ex-

pensive, easier to navigate, and reduces maintenance burdens. It is also important

in circuit design and Very Large Scale Integration (VLSI) where components can be

modeled as vertices, wires as edges, and edge crossings are undesirable because they

can cause short-circuits or interference. Yet, despite its importance to practical ap-

plications, there are no known efficient algorithms to embed graphs into arbitrary

surfaces. In fact this problem is NP-hard and many popular mathematical software

packages such as Mathematica, completely forego a standard implementation of a

genus calculation algorithm.

This thesis started by rigorously defining the problem with topological graph the-

ory, and then introduced important work by Heffter, Edmonds, and Youngs to express

the problem of graph embedding purely combinatorially. Combinatoric representa-

tions are often a crucial step in general when trying to approach an optimization

problem algorithmically. Building on this work, the thesis then studied an adapta-

tion of rotation systems, Practical Algorithm for Graph Embedding (PAGE), that

takes advantage of the cycle length distribution of a graph to work particularly well

for graphs of high girth, or low degree, since these reduce the number of cycles to

explore. This yields a practical algorithm for graph families such as the 3-regular

graphs and cage graphs. In particular, PAGE determined the previously intractable

genus of the (3, 12)-cage as 17.

19

BIBLIOGRAPHY

[1] Dan Archdeacon. Topological graph theory - a survey. 1996. URL: http://www.
math.u-szeged.hu/~hajnal/courses/PhD_Specialis/Archdeacon.pdf.

[2] H.R. Brahana. Systems of circuits on two-dimensional manifolds. Annals of
Mathematics, 23(2):144–168, 1921. doi:10.2307/1968030.

[3] Gunnar Brinkmann. A practical algorithm for the computation of the genus. Ars
Mathematica Contemporanea, 22, July 2022. doi:10.26493/1855-3974.2320.

c2d.

[4] Andries E. Brouwer. Cages. Collection of adjacency lists by a professor
at Techn. Univ. Eindhoven. URL: https://www.win.tue.nl/~aeb/graphs/

cages/cages.html.

[5] The Sage Developers. Genus computation module. Accessed: 2025-05-
12. URL: https://github.com/sagemath/sage/blob/develop/src/sage/

graphs/genus.pyx.

[6] The Sage Developers. SageMath, the Sage Mathematics Software System (Ver-
sion 10.3), 2025. URL: https://www.sagemath.org.

[7] Jonathan L. Gross and Thomas W. Tucker. Topological Graph Theory. Dover
books on mathematics. Dover Publications, 2012. ISBN: 9780486417417. URL:
https://books.google.com/books?id=6HmA_x0dL9oC.

[8] Nora Hartsfield and Gerhard Ringel. Pearls in Graph Theory: A Com-
prehensive Introduction. Dover Books on Mathematics. Dover Publications,
2013. ISBN: 9780486315522. URL: https://store.doverpublications.com/
products/9780486315522.

[9] Casimir Kuratowski. Sur le problème des courbes gauches en topologie. Fun-
damenta Mathematicae, 15(1):271–283, 1930. URL: https://eudml.org/doc/
212352.

[10] Simon L’Huilier and Joseph Diez Gergonne. Géométrie. mémoire sur la
polyédrométrie; contenant une démonstration directe du théorème d’euler sur

http://www.math.u-szeged.hu/~hajnal/courses/PhD_Specialis/Archdeacon.pdf
http://www.math.u-szeged.hu/~hajnal/courses/PhD_Specialis/Archdeacon.pdf
https://doi.org/10.2307/1968030
https://doi.org/10.26493/1855-3974.2320.c2d
https://doi.org/10.26493/1855-3974.2320.c2d
https://www.win.tue.nl/~aeb/graphs/cages/cages.html
https://www.win.tue.nl/~aeb/graphs/cages/cages.html
https://github.com/sagemath/sage/blob/develop/src/sage/graphs/genus.pyx
https://github.com/sagemath/sage/blob/develop/src/sage/graphs/genus.pyx
https://www.sagemath.org
https://books.google.com/books?id=6HmA_x0dL9oC
https://store.doverpublications.com/products/9780486315522
https://store.doverpublications.com/products/9780486315522
https://eudml.org/doc/212352
https://eudml.org/doc/212352

20

les polyèdres, et un examen des diverses exceptions auxquelles ce théorème est
assujetti. Annales de mathématiques pures et appliquées, 3:169–189, 1812-1813.
URL: http://www.numdam.org/item/AMPA_1812-1813__3__169_0/.

[11] Gaku Liu. Math 461 and 462: Combinatorial theory i and ii, Winter and Spring
Quarters 2024-2025. Course content is only available to students.

[12] Alexander Metzger and Austin Ulrigg. An efficient genus algorithm based on
graph rotations, 2025. arXiv:2411.07347.

[13] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins
University Press, July 2001. ISBN: 9780801866890. URL: https://www.sfu.
ca/~mohar/Book.html.

[14] Sophia N. Potoczak. Survey of Graph Embeddings into Compact Surfaces. PhD
thesis, University of Maine, 2014. URL: https://digitalcommons.library.
umaine.edu/cgi/viewcontent.cgi?article=3192&context=etd.

[15] Carsten Thomassen. The graph genus problem is np-complete. Journal of Algo-
rithms, 10(4):568–576, 1989. doi:10.1016/0196-6774(89)90006-0.

[16] Alex Waldrop. Rotation systems and cellular imbeddings. University of Wash-
ington REU 2011. URL: https://sites.math.washington.edu/~reu/papers/
2011/alex/RotationSystemsImbeddings_AWaldrop.pdf.

http://www.numdam.org/item/AMPA_1812-1813__3__169_0/
https://arxiv.org/abs/2411.07347
https://www.sfu.ca/~mohar/Book.html
https://www.sfu.ca/~mohar/Book.html
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=3192&context=etd
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=3192&context=etd
https://doi.org/10.1016/0196-6774(89)90006-0
https://sites.math.washington.edu/~reu/papers/2011/alex/RotationSystemsImbeddings_AWaldrop.pdf
https://sites.math.washington.edu/~reu/papers/2011/alex/RotationSystemsImbeddings_AWaldrop.pdf

	Introduction
	Background
	Topology
	Graph Theory
	Compact Surfaces
	Graph Embedding
	Rotation Systems

	Algorithm
	Motivation
	Walkthrough
	Results

	Conclusion
	Bibliography

