

**48%** of all <u>foreign speakers</u> struggle with their accent.

**Goal:** use phonetics to provide foreign speakers granular pronunciation feedback

#### Issue: most transcriptions are highly inaccurate for non-standard speech

native speech 🛤





Ground truth: koli karts

Ground truth: kalıŋ kaıdz

#### kolıŋ kuldz

**Error: 10%** 





**Error: 45%** 

#### Question

How can we improve a pretrained model that overfits to representing standard speech to transcribe non-standard speech phonemes, including L2 accented speech and speech impediments?

- 1) What is the **smallest set of speech** sounds needed to capture both standard and non-standard American English?
- 2) Does following a **curriculum** approach using computer-labeled data **prior** to limited human-labeled data improve performance?





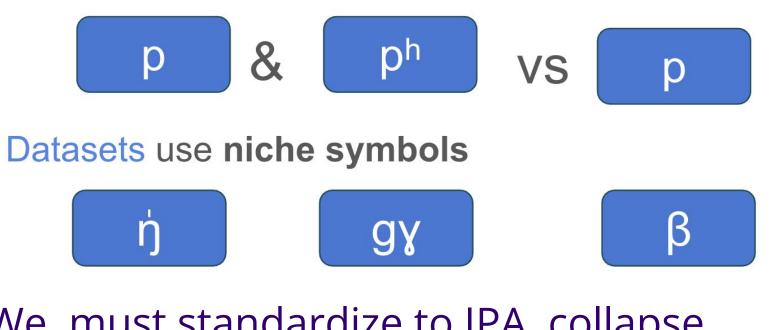


Phonetic annotation **varies** across **every** dataset and linguistic annotator.

Datasets use different phonetic alphabets

(a)

Datasets use annotators with different training



We must standardize to IPA, collapse redundant phones, and manually remove highly bias/ambiguous samples

## Modeling Non-Native Pronunciation a la R Zaøßtdzaø PAUL G. ALLEN SCHOOL **OF COMPUTER SCIENCE & ENGINEERING Prior Pretrained G2P Intermediary**

**XLSR model** 500k hours of speech

**ASR Intermediary** 50k hours of speech **G2P Intermediary** 10k hours of speech

#### G2P Model = BAD

**G2P trained checkpoint** is ineffective to model non-standard speech well

Gibberish in the pretrained model vocab: 🤓

**e**<del>v</del>

**Redundancy** in the **pretrained model vocab** : =  $\begin{bmatrix} \partial^{1} \\ \partial^{2} \end{bmatrix} =$   $\begin{bmatrix} \partial_{1} \\ \partial_{2} \end{bmatrix} \approx \begin{bmatrix} \partial_{1} \\ \partial_{3} \end{bmatrix} \approx \begin{bmatrix} \partial_{1} \\ \partial_{1} \end{bmatrix}$ 

J

Why???

We curate ~100 hours of speech data across 9 representative

annotated datasets

### Dataset Vocab Refinement

AXR P

Grapheme to Phone: koli karts **Our Method** 

Use high-quality **human annotated** phonetic transcription

> **XLSR** mo 500k hours of sp

**ASR Interm** 50k hours of sp

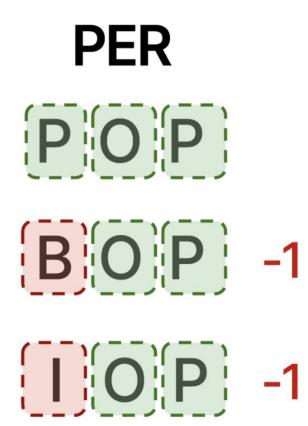
G2P Interme 10k hours of spe

Human D 100 hours of s

### **Evaluation**

We use phoneme error rate (**PER**) and weighted phoneme error rate (FER) for evaluation.

PER considers all character differences equally, FER considers the differences by linguistic distance. For a model that has a similar vocabulary to the test set, it's PER will be superficially high compared to a model that has a slightly different vocab/phoneme notation.





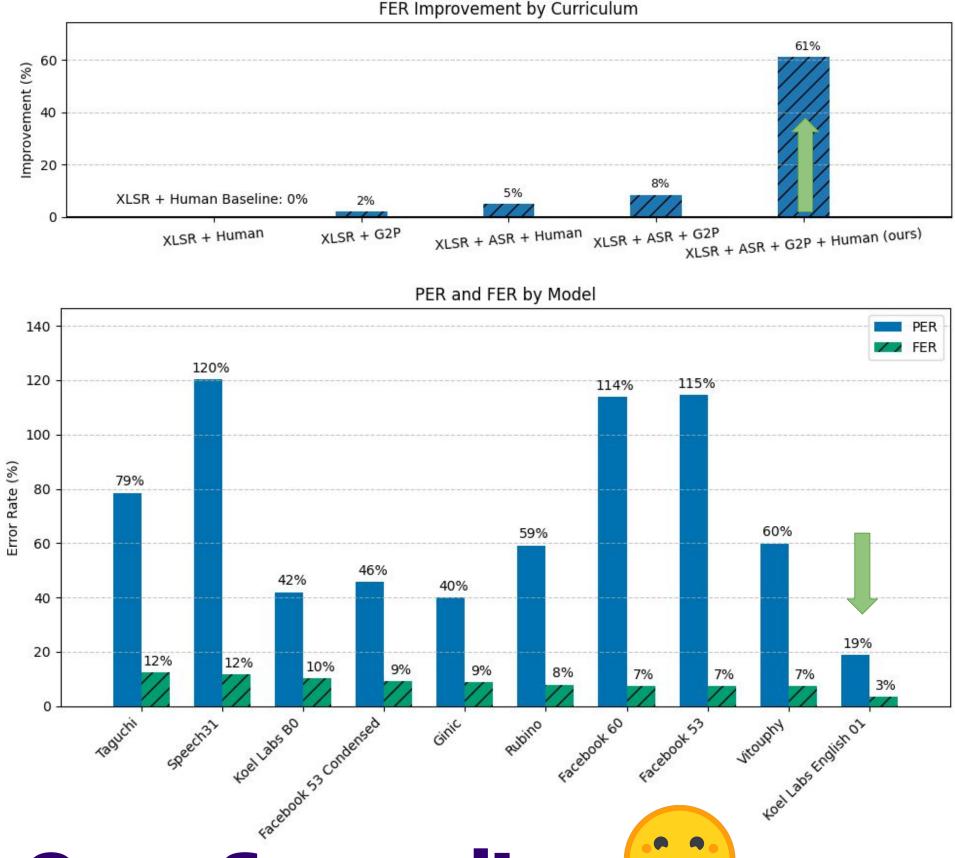
# data as the final layer of learning for

| del<br>Deech        |  |
|---------------------|--|
|                     |  |
| ediary              |  |
| ediary              |  |
| <b>ata</b><br>peech |  |
|                     |  |

#### Weighted PER



#### Results



#### **Open Sourced!**

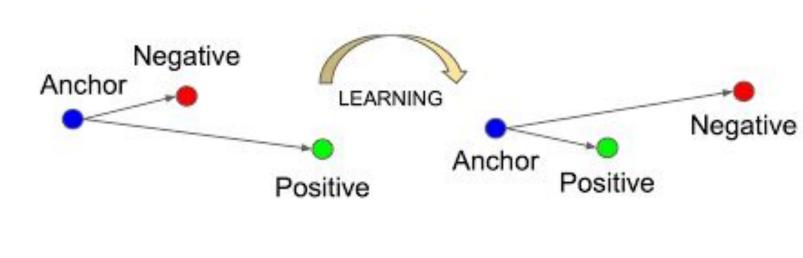
You can test our State-of-The-Art model yourself! <u>https://shorturl.at/f8Y1E</u>

#### Limitations

- Wav2Vec2 architecture constraints
- Speaker diversity bias
- Unaddressed annotator bias

#### **Future Work**

- Handle annotator bias
- Explore IPA representations
- Employ contrastive learning!



Interested in learning more? Sign up for the **Beta!** 

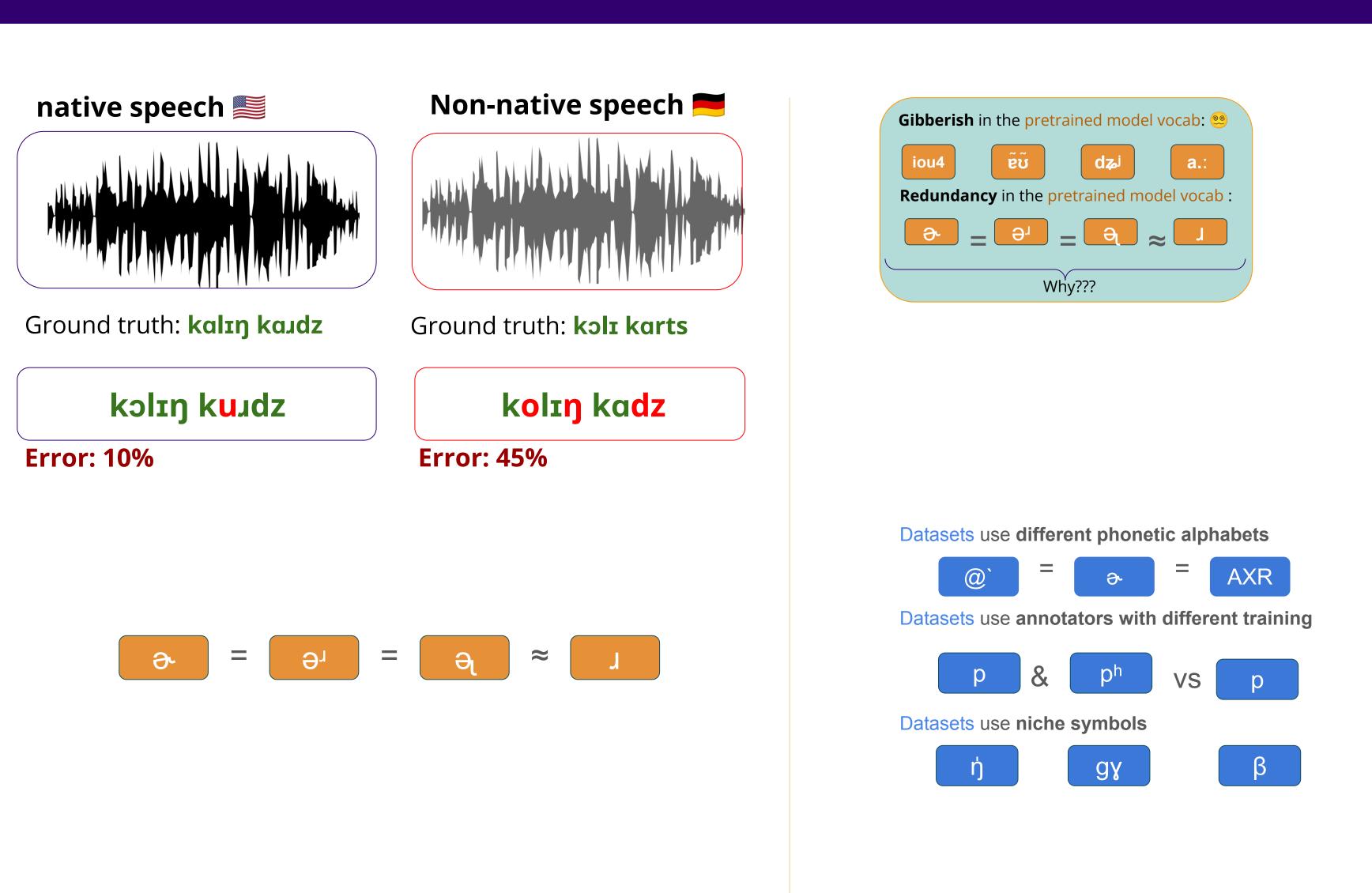


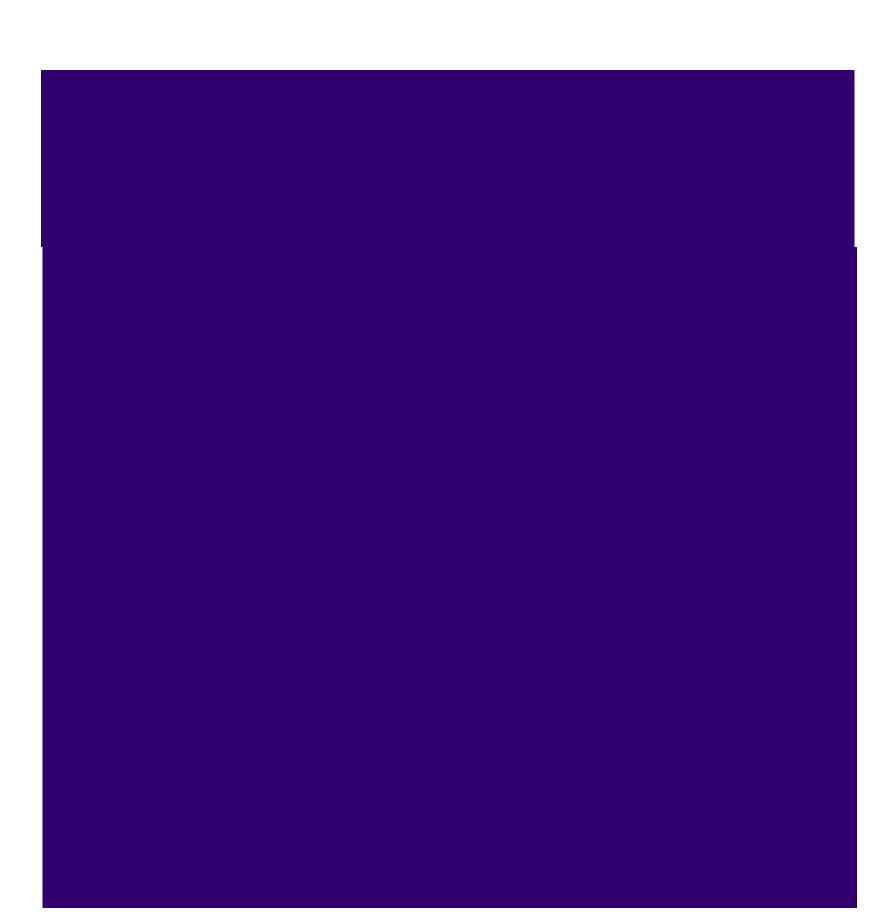


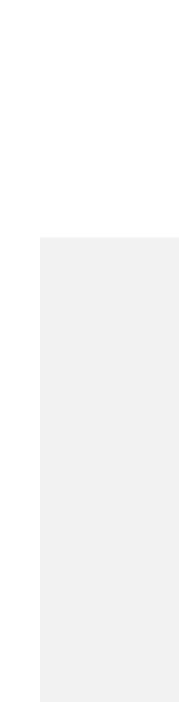


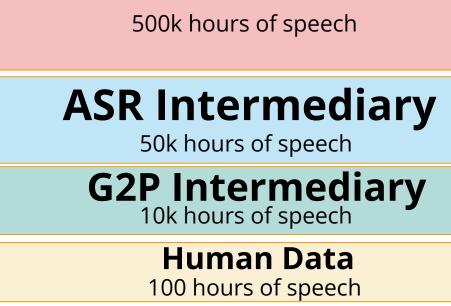


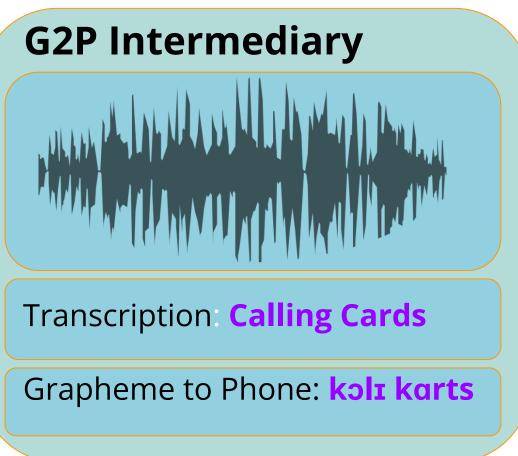
#### sounds in the pretrained model













## XLSR model